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The Davidson’s algorithm for solving large symmetric matrices is generalized to nonsym- 
metric cases. The method is based on the non-variational eigenvalue equation. The algorithm 
can be expected to converge particularly well for the eigenvalue whose eigenvector has a 
desired structure (excited states as well as the ground state). The method has been applied 
successfully to some nonsymmetric eigenvalue problems in our cluster expansion theory. 

I. INTRODUCTION 

Large eigenvalue problems arise in many scientific and engineering problems. For 
symmetric problems a great number of methods have been developed for evaluating 
eigenvalues and eigenvectors [ 11. The methods can be divided into two basically 
different groups, that is, variational and non-variational. 

The variational approach is based on the fact that the Rayleigh quotient 

p(c) = CTAC/C=C 

has a minimum at the eigenvector corresponding to the lowest eigenvalue. An 
iterative algorithm has been developed by Nesbet and others [2] to find the lowest 
eigenvalue and its eigenvector. Shavitt et al. [3] have generalized this further to 
obtain higher roots but it requires all eigenvalues below the one desired. Another 
important development has been made by Brlndas and Goscinski [4] who use a 
combined method of the variational principle and the perturbation theory. 

The non-variational approach has also been given by several other authors. Iwata 
and Freed [S ] have proposed a method by using Liiwdin’s matrix partitioning 
technique [6]. A very powerful method for this problem has been devised by David- 
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son [7], which is an extension of the Lanczos’ algorithm [8]. An important feature of 
Davidson’s method is that a direct determination of desired higher roots is possible 
without a knowledge of lower ones. Another advantage is that there is no difficulty 
even in the case of degeneracy of roots. The potentialities of this method have been 
realized by the recent large scale configuration interaction (CI) calculation of a 
wavefunction for atoms and molecules [9]. 

On the other hand, known methods for solving a large nonsymmetric matrix are 
very limited. Most of the practical techniques presented so far are based on the power 
method and use a combination of iterative and direct methods for increasing the 
dominance of the eigenvalue of maximum modulus [IO]. Recently the method of 
optimal relaxation proposed by Shavitt et al. [3 J has been applied to the nonsym- 
metric problem of the equation of the motion method [ 111. 

The purpose of a present paper is to extend the Davidson’s method to nonsym- 
metric eigenvalue problems. Two algorithms have been presented to find desired 
eigenvectors and the associated eigenvalues. The methods have same advantages as 
those in Davidson’s method and a convergence property is much superior to that of 
the power method. In the first method, left- and right-hand eigenvectors are sought in 
subspaces spanned by two sets of bi-orthogonal vectors. The second algorithm uses a 
sequence of orthonormal vectors to approximate eigenvectors. These two methods 
have been applied successfully to nonsymetric matrices of various sizes in the recent 
investigation of electron correlation problems for atoms and molecules by a cluster 
expansion theory [ 121. 

II. THEORETICAL BACKGROUND 

The algorithms will be developed for the nonsymmetric problem 

AX, = nix,, (1) 
where A is a given real nonsymmetric matrix of order N, li the ith eigenvalue and Xi 
the corresponding right-hand eigenvector. The left-hand eigenvector xi belonging to 
the same eigenvalue satisfies the equation 

AHiFi = nix,. (2) 
A superscript H denotes a Hermitian transpose. Throughout this paper a bar above a 
vector or a matrix indicates that it is derived from AH. We consider how to determine 
the kth eigenvalue whose eigenvectors have a desired structure. 

Let N x m matrices 

P) = (6, ) b; )...) b-,) and Pm) = (b, ) b, ,...) b,) 

represent two sets of vectors which obey a bi-orthogonal relation 

@(m))H B(m) = 1(m), 
(3) 
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where I(*) is an m x m unit matrix. Assume that subspaces spanned by columns of 
BCrn) and Btrn) contain a good approximation to desired left- and right-hand eigen- 
vectors, 2, and X,, respectively. These trial vectors are determined simultaneously in 
order to give a fast convergence to the desired eigenvectors. Since A is nonsymmetric, 
complex basis vectors may appear at some stage of the iteration even when one starts 
initially with real vectors. A projection of A onto subspaces gives a so-called 
interaction matrix 

J(m) = @(m))HA~(m). 

Suppose that $“) can be diagonalized such that 

(cm)- lJ(m)c(m) = (c(m))H J(m)c(m) = A(m), 

where left- and right-hand eigenvectors of XC”‘) are bi-orthogonal 

((y))H c(m) = p. 

(4) 

(5) 

(6) 

This involves a direct solution of a comparatively small m x m nonsymmetric eigen- 
value problem. Equation (5) is equivalent to eigenvalue equations 

(L(m) - np,m’> cp) = 0, 

((J(m))H - nim) Qm) = 0. 
Pa) 

(7b) 

The approximation consists in replacing an eigenvalue problem for A by a problem of 
the same type of xCrn). When m = N, eigenvalues of A are the same eigenvalues of 
A’@‘). Even when m is very much less than N, we could obtain desired eigenvalues of 
A to a good approximation if subspaces are well chosen. Suppose that the desired kth 
eigenvalue of the full matrix of A corresponds to the k’-th eigenvalue of J(‘“‘. Then 
expansions 

and x(p) = B(m)c(m) 
k’ 

will converge to left- and right-hand eigenvectors of A, respectively. 
We can improve the approximate eigenvalue Ai? by extending subspaces, that is, 

by adding new vectors b;, + t and b,, , to the original sets. New vectors are generated 
such that residual vectors will converge to zero. Residual vectors f and < satisfy 

(A - @‘))(X;mm’ + t) = 0, (84 

(AH - ~~‘?)(~~m’ + f) = 0. (8b) 

Then we can approximate residual vectors as 

r I,rnil = @P) -4J’q,,w 
t,,,,, = (@‘) -4,)-‘&n, Z = 1, 2 ,..., N, (9) 
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with 

If l(m) and Xi”” are an exact eigenvalue and eigenvector pair, then q,,, = 0. Thus, the 
sizekof q,,, measures the accuracy of Ai’? and XL’@. 

It is convenient to bi-orthogonalize predicted vectors before a further round of 
iteration. Current vectors can be bi-orthogonalized according to 

d m+1= fi v-w%? rm+,, 
i=l I 

&l+1= IT (I-b;V) L,,. 
i=l 1 

(11) 

Arbitrary scaling factors can be applied to each vector to give 

hH b m+1 mt1= 1. (12) 

In practice, 6,,,+, and b,, 1 have been chosen such that 

b m+~ =4n+,lkd’*r b-,,, =4,,+J(g,,,)“‘, (13) 

where 

g mtl =~%,L,~ (14) 

It is necessary to change the sign of one of the vectors if g,, , becomes negative. 
However, this may only happen in the initial round of iteration. 

Convergence is achieved if )(qm(J and [lq,,,,11 become less than a given threshold. 
Left- and right-hand eigenvectors obtained are bi-orthogonal 

(f(m))Hx(m) = (~(m))H(J(m))H B(m)@) = 1 (1% 

but they are not self-orthonormal. So it is necessary to renormalize eigenvectors after 
convergence is reached. As suggested by Davidson 171, when m becomes large, 
current sets of @m)t?i’? and B’m’Ci’!‘) can be taken as new initial sets and the 
calculation restarted. We call this a refreshment process. 

If A is symmetric, two sets of B(m) and B(‘“) are identical and the method becomes 
essentially Davidson’s method since columns of Bcm) itself are made orthogonal at 
each stage. 

The present method is only based on the eigenvalue equations (1) and (2) (i.e., (8a) 
and (8b)). Thus, theoretically any eigenvalues and eigenvectors of the matrix can be 
found. In practice the convergence for each eigenvalue is obtained by means of the 
root-homing-procedure discussed by Butscher and Kammer [ 131. The eigenvector 
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matrix X’m) is inspected after each iteration such that Xfi) has the largest overlap 
with the prediagonalization vector which represents the structure of the eigenvector 
wanted. The algorithm enforces convergence into just the eigenvalue whose eigen- 
vector has the desired structure. The use of the root- homing procedure is essential for 
the calculation of higher roots and degenerate roots. 

An alternative approach for solving the eigenvalue problem for nonsymmetric 
matrices is as follows. Consider a matrix B w having orthonormal vectors 

Bcm) = (b, , b, ,..., b,) 

with 
(BW)HBW = pd. (16) 

Assume that the desired right-hand eigenvector, X,, can be expressed to a good 
approximation as a linear combination of these trial vectors. In this case, we concen- 
trate our attention on the right-hand eigenvalue problem of (1). Form the nonsym- 
metric intraction matrix of order m, 

L(m) = (~(m))ff~~(m) 
(17) 

by projecting A onto the subspace spanned by columns of Bcm) and find a unitary 
transformation U(“‘) such that 2’(m) is upper triangular 

~fm) = (U(m))HJ(m)U(m) (18) 

with diagonal elements Al”“. The matrix T”“’ is similar to the full matrix A and its 
eigenvalues coincide with those of A. Now suppose that Tern) can be diagonalized by 
pm, 

(pcm,)- 1 T(m,pcm, = ~o?l)* (19) 

Let us define C(“‘) = Utm)Pcm). Then, the column Xim,“’ = B’“‘Ci? will converge to the 
desired right-hand eigenvector of A. 

The subsequent vector b,, 1 can be found by Schmidt-orthogonalization of a 
residual vector <,,, + , to all previous vectors. The &+ , is defined similarly as above by 

r t,m+1 = (W -4,r’qIJn~ I = 1, 2 )...) N, (20) 

with 

qm = (A - /Ii?) xp (21) 

and then orthogonalized with respect to the other vectors 

b m+l =42+1/ll4l+1l1. 
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The algorithm is the same as Davidson’s except for solving a nonsymmetric 
interaction matrix. The method gives only the right-hand eigenvector but the 
expansion $“” = B(m)(C(m))i,H at the end of finding the right-hand eigenvector may 
provide a good approximation for the corresponding left-hand eigenvector. 

Two algorithms presented here can also be used for the general eigenvalue 
problems AX = ASX with a slight modification. Here S is a given metric which is 
real, symmetric and positive definite. Every (A - &), bybj, bib:,..., should be 
replaced by the corresponding (A - &S), bTSbj, bi(Sbi)H,..., respectively. 

When several eigenvalues are wanted, it is very useful to extend the present 
methods to find several eigenvalues at a time. In this case several eigenvectors are 
expanded in a block sequence of orthonormal or bi-orthogonal vector basis. Each 
iteration yields several vectors simultaneously resulting in fast convergence to the 
desired eigenvectors of the matrix. These extended algorithms may have more 
powerful convergence properties than the original ones because the relative inter- 
ference of vectors can be removed at each interation and poor convergence due to the 
near degeneracy of roots can be improved. 

III. TEST RESULTS 

Since the method requires only the concentration of Ab, (AHbi) for any given 
vectors bi (6;.) and the orthogonal or bi-orthogonal basis can be generated by 
sequential vector matrix multiplication, the algorithm is well suited to large nonsym- 
metric eigenvalue problems. In addition, the method can handle sparse matrices 
efficiently. 

The present algorithms have been applied to several nonsymmetric matrices of 
various sizes in the recent investigation of electron correlation problems by a cluster 
expansion theory [ 121. The methods turn out to be very effective and no convergence 
difficulties arise even for a direct determination of desired higher roots. As an 
example, we summarized in Tables I and II results of the convergence process for the 
lowest and second lowest roots of the non-variational SAC-C1 matrix for the triplet 
A, state of H,O (almost symmetric). Starting vectors are determined by the CI 
calculation. The convergence properties are similar to those in the symmetric case. 
The time per iteration of the the method with bi-orthogonal basis was 1.2 times as 
much as that of the Davidson’s procedure for the corresponding symmetric matrix 
(variational SAC-C1 matrix). The nonsymmetric algorithm often converges in slightly 
more iterations than the symmetric procedure. In these examples two algorithms (two 
sets of bi-orthogonal vectors and one set of orthogonal vectors) were found to have 
very similar convergence properties. In both cases, the convergence was obtained in a 
reasonable number of iterations, generally in fewer than 25 iterations with the 
convergence criteria llqmll < 10e6. 

Second the method is compared with a full diagonalization. Consider the nonsym- 
metric matrix [ 141 
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TABLE I 

Convergence Process to the Lowest Root (‘A, State) of H,O Matrix (N = 1129)“.’ 

M 
E AE 

(au) (au) IIq,,ll 

1 0.22005917 - 0.4058984 
2 0.14810541 -0.07195377 0.1442040 
3 0.13395789 -0.01414752 0.0765616 
4 0.13041188 -0.00354600 0.0440078 
5 0.12923475 -0.00127713 0.0234006 
6 0.12881130 -0.00032345 0.0128173 
I 0.12871985 -0.00009 145 0.0082276 
8 0.12866675 -0.000053 10 0.0049747 
9 0.12864683 -0.0000 1992 0.0033006 

IO 0.12863951 -0.00000732 0.0018201 
11 0.12863712 -0.00000238 0.0009033 
12 0.12863679 -0.00000033 0.0004092 
13 0.12863667 -0.000000 12 0.00029 10 
14 0.12863662 -0.00000005 0.0001624 
15 0.12863660 -0.00000002 0.00009 11 
16 0.12863659 -0.0000000 1 0.0000504 
17 0.12863659 o.oooooooo 0.0000357 
18 0.12863659 0.00000000 0.00002 18 
19 0.12863659 o.ooooO0oo 0.0000 140 
20 0.12863659 o.oooooooo 0.0000076 
21 0.12863659 0.00000000 0.0000053 
22 0.12863659 0.00000000 0.0000024 
23 0.12863659 o.ooooO0oo 0.0000016 
24 0.12863659 o.oooooooo 0.0000010 

A,=ia,-(i-j-k’) 1 <.i<k, 

=id,+(i-j-k’) k+l<j<N, 
(23) 

’ The energies are relative to the Hartree-Fock energy, -76.03731 au. 
b The right-hand eigenvector; 0.8355 x Y(5 -+ 7) + 0.4482 X Y(5 + 10) - 0.2402 X Y(5 --t 14) + ... . 

The left-hand eigenvector; 0.8267 x ‘Y(5 + 7) + 0.4421 x V(5 -+ 10) - 0.2360 x !?(5 -+ 14) + ... 

where 

N= 2k. 

The matrix A has real eigenvalues 1,2,..., N, right-hand eigenvectors which are 
columns of (I+ UVT) and left-hand eigenvectors which are rows of (I - UV). Here 
u= (1, l,..., 1) and VT = (1, l,..., 1, -1, -l,..., -1) with k components of 1 and k 
components of -1. First a full diagonalization was done by a double QR method on 
a FACOM M200 computer and all eigenvalues were calculated. It takes 2.5 and 
17.7 set to solve the matrix of N = 100 and of N = 200, respectively. Second the 
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TABLE II 

Convergence Process to the Second Lowest Root (3A, State) of H,O Matrix (N = 1 129)‘*b 

M 
E 

(au) 

AE 

(au) llq,wll 

1 0.29430328 - 0.3 149432 
2 0.2470094 1 -0.04729387 0.1447755 
3 0.23429804 -0.01271137 0.0760444 
4 0.2308 1265 -0.00348540 0.0425022 
5 0.22983 184 -0.00098080 0.0221159 
6 0.22952958 -0.00030226 0.0153357 
I 0.22943993 -0.oooO8965 0.0082444 
8 0.22938817 -0.00005 15 7 0.0062884 
9 0.22936302 -0.000025 15 0.0037299 

10 0.22935281 -0.00001021 0.002322 1 
11 0.22934977 -0.00000304 0.0012189 
12 0.22934897 -0.00000080 0.0007334 
13 0.22934853 -0.00000044 0.0005549 
14 0.22934827 -0.00000025 0.0003860 
15 0.229348 19 -0.00000009 0.0002177 
16 0.22934816 -0.0OOOOOO3 0.0001788 
17 0.22934815 -0.0ooooO0 1 0.0000940 
18 0.229348 14 -0.0000000 1 0.0000734 
19 0.22934814 0.00000000 0.0000389 
20 0.229348 14 0.00000000 0.0000238 
21 0.229348 14 o.oooooooo 0.0000 179 
22 0.22934814 o.oooooooo 0.0000113 
23 0.22934814 0.00000000 0.0000084 

’ The energies are relative to the Hartree-Fock energy, -76.03731 au. 
* The right-hand eigenvector;0.4906 X Y(5 + 7) - 0.5862 X Y(5 + 10) + 0.6033 X Y(5 + 14) + ... . 

The left-hand eigenvector; 0.4873 X V(5 + 7) - 0.5793 X Y(5 --) 10) t 0.5973 X p(5 + 14) t ... . 

present algorithm with orthogonal vectors was applied and the four lowest roots were 
computed simultaneously. The four starting vectors are unit vectors with 1.0 in 
position of 1, 2, 3 and 4, respectively. The computing time for the matrix of N = 100 
is 4.5 seconds and 10.7 set for the matrix of N = 200. Thus, the present algorithm is 
preferred for large N if one wants only a few eigenvalues. 

To conclude, Davidson’s algorithm for solving large symmetric matrices is 
generalized to the nonsymmetric cases. The method is based on the non-variational 
eigenvalue equation. Therefore, the algorithm can be expected to converge 
particularly well for the eigenvalue whose eigenvector has a desired structure and 
there is no diffkulty even in the case of degeneracy of roots. 
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